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Abstract

In this paper we construct examples of arithmetic lattices Γ in
SLn(R) in an explicit manner that has not previously appeared in the
literature. We give number-theoretic criteria for compactness of the
quotient space Γ\SLn(R) and describe some particularly nice proper-
ties of Γ for the case n = 3.

1 Introduction

The theory of arithmetic groups has its origins in the work of Borel and
Harish-Chandra (see particularly [3]). Much subsequent work has been done
in exploring the arithmetic groups as they pertain to Lie theory (especially
with classical linear algebraic groups), including criteria for compactness (cf.
[7]). However, this work has been done in an abstract fashion that does
not permit easy calculation of matrices or an examination their properties.
In the present work, we develop explicit constructions of groups Γ in the
ambient space SLn(R). While such groups have been constructed in a more
abstract setting (see especially Borel [2], p. 253 ff.), our construction derives
its form from a particular collection of abelian number fields, which is in
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turn derived from Gaussian periods. In this way, we enable a computational
examination of the groups Γ associated to these number fields, as well as the
matrices and eigenvalues that arise from such groups. Following the lead of
Morris [6], we give a necessary and sufficient condition for a lattice Γ to have
compact quotient in SLn(R). Lastly, we discuss some special properties of
these lattices particular to the case n = 3.

2 Arithmetic lattices

In general, a subgroup Γ of a Lie group G is said to be a lattice in G if

1. it is discrete as a topological space (i.e., it possesses no accumulation
points), and

2. it is cofinite in G (i.e., the volume of Γ\G is finite).

If the quotient space Γ\G is also compact, we say that Γ is a cocompact
lattice. In this section, we consider lattices Γ ⊆ SLq(R) that are arithmetic.
While the presentation of arithmetic lattices often varies, we will take the
work of Platonov and Rapinchuk [8] as our starting point.1

Provisional Definition. Let G ⊆ GLn(C) be an algebraic group defined
over Q and define GZ = G ∩ GLn(Z). A subgroup Γ ⊆ G is arithmetic if it
is commensurable with GZ; i.e., the intersection Γ ∩ GZ has finite index in
both Γ and GZ.

However, this definition fails to account for some lattices that we wish to
consider as arithmetic. Thus, we extend the provisional definition in what
follows. Let V be an n-dimensional complex vector space and suppose that
VQ is a rational subspace of V such that

1. dimQ(VQ) = dimR(V ), and

2. VQ generates V as a real vector space.

Then let M be a Z-submodule of VQ generated by the basis E = {e1, e2, . . . , en};
in other words, M = Ze1 + Ze2 + · · · + Zen. We now state a more complete
definition for arithmetic lattices.

1The interested reader should also consult [3] and [9].
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Definition 1. Let V be a finite-dimensional, complex vector space with ra-
tional subspace VQ, as described above. Furthermore, let G ⊆ GL(V ) be a
linear algebraic subgroup, and take GM = {g ∈ G : gM = M}. A lattice
Γ ⊆ G is VQ-arithmetic (or simply arithmetic) in G if Γ is commensurable
with GM for some Z-submodule M ⊆ VQ.

Note that when e1, e2, . . . , en are the elementary vectors, M = Zn and
GM = GZ. Thus, the general definition reduces to the provisional definition
when the basis E is chosen in the simplest way.

3 Constructing arithmetic lattices

Let L be a Galois extension of Q of odd prime degree q, and let σ be a
generator of Gal(L/Q). Given a positive integer p, define the set map ϕ :
Lq → Matq×q(L) by

ϕ(x1, x2, . . . , xq) =















x1 x2 x3 · · · xq

pσ(xq) σ(x1) σ(x2) · · · σ(xq−1)
pσ2(xq−1) pσ2(xq) σ2(x1) · · · σ2(xq−2)

...
...

...
. . .

...
pσq−1(x2) pσq−1(x3) pσq−1(x4) · · · σq−1(x1)















.

Note that a similar set map was used by Morris [6] for q = 3. Now define
A = ϕ(Lq); it is straightforward to show that A is a Q-algebra. Lastly, define
Γ = ϕ(Oq

L) ∩ SLq(R), where OL denotes the ring of integers in L.

Theorem 1. Γ is an A-arithmetic lattice in SLq(R).

Proof. Since Galois automorphisms take algebraic integers to algebraic in-
tegers, ϕ(Oq

L) is a subset of Matq×q(OL). It follows that ϕ(Oq
L) = A ∩

Matq×q(OL). Since A and Matq×q(OL) are rings, ϕ(Oq
L) is also a ring. Next,

note that L is a real field since it is a Galois extension of odd degree. (If
L contained a nonreal number, complex conjugation would be a nontrivial
automorphism of L and the Galois group would have even order.) Thus A
and ϕ(Oq

L) are subrings of Matq×q(R). Now make the following denotations:

1. V = Matq×q(C), a q2-dimensional complex vector space;

2. VQ = A = ϕ(Lq), a q2-dimensional rational subspace of V ;
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3. M = ϕ(O q
L), a subring of VQ;

4. G = SLq(R), a subgroup of GL(V ).

From the general fact L = OL⊗ZQ, it follows that M is a Z-submodule of VQ.
Next, we show that Γ = GM . Suppose that γ ∈ Γ. Then, γ is an invertible
element of the ring M . Thus, γM = M and so Γ ⊆ GM . Conversely, consider
an element g ∈ GM . Since M contains the identity matrix I = ϕ(1, 0, 0), we
know from the definition of GM that g = gI ∈ M . Since g is a determinant
one matrix, g ∈ Γ and so GM ⊆ Γ. Thus, Γ = GM is an A-arithmetic lattice
in SL3(R).

4 The structure of the algebra

Since the algebra A is somewhat unwieldy, it is convenient to construct an
alternative algebra that is more amenable to analysis. Then, we show that
these two algebras are in fact isomorphic. This leads to precise criteria for
A to be a division algebra, which enables us to determine conditions under
which Γ is cocompact in SLq(R).

Let L be a Galois extension over Q of odd prime degree q. Then the
group Gal(L/Q) is cyclic; let σ be a generator of this group. Let p be a
rational prime for which xq − p is irreducible over L. Using L, σ, and p, we
can define an algebra Ã by

Ã = ÃL,σ,p =
{

a0 + a1z + · · · + aq−1z
q−1 : ai ∈ L

}

where multiplication resembles that of polynomials with the exception that
multiplication involving the symbol z is not commutative. Specifically, we
define z · a = σ(a) · z for a ∈ L and zq = p. Reiner has shown that Ã is
a central simple algebra over Q ([10], Theorem 29.6). We will show that A
and Ã are isomorphic as Q-algebras.

First, note that any matrix A = ϕ(x1, . . . , xq) ∈ A is characterized by
the fact that any entry Ai, j of A satisfies

Ai, j = π(i, j) · σi−1(A1, τ(j)), (4.1)

where

π(i, j) =

{

1 if i ≤ j

p if i > j
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and τ(j) = τi(j) = [(j − i) mod q] + 1 captures the cyclic permutation for
each row of the matrix.

Theorem 2. Let ϕ : Lq → Matq×q(L) be defined as above, and A = ϕ(Lq).
Then the map Φ : Ã → A defined by

Φ(x1 + x2z + · · · + xqz
q−1) = ϕ(x1, x2, . . . , xq)

is an isomorphism of Q-algebras.

Proof. First, note that the map Φ is well-defined since every element of Ã
may be written uniquely as a linear combination of powers of z with exponent
less than q. Clearly, Φ is a bijective set map and is also an additive homo-
morphism. To verify that Φ is a ring homomorphism, we require a formula
for multiplication in Ã. To this end, let

(x1 + x2z + · · · + xqz
q−1), (y1 + y2z + · · · + yqz

q−1) ∈ Ã .

Then,

(x1 + x2z + · · · + xqz
q−1)(y1 + y2z + · · · + yqz

q−1)

=

q
∑

j=1

(

q
∑

m=1

xm · zm−1 · yτ(j) · z
τ(j)−1

)

=

q
∑

j=1

(

q
∑

m=1

xm · σm−1(yτ(j)) · z
τ(j)−1+m−1

)

,

where τ = τm is the permutation described earlier. Note that τ(j)−1 = j−m
if m ≤ j and j − m + q if m > j. Consequently, zτ(j)−1+m−1 = π(m, j)zj−1

and we get

q
∑

j=1

(

q
∑

m=1

π(m, j) · xm · σm−1(yτ(j))

)

zj−1 .

Now define the matrix W by

W = Φ((x1 + x2z + · · · + xqz
q−1)(y1 + y2z + · · · + yqz

q−1)).

Clearly, the elements in the first row of W are the coefficients of the above
polynomial expression in z. Specifically,

W1, j =

q
∑

m=1

π(m, j) · xm · σm−1(yτ(j)).
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Now consider the matrices

X = Φ(x1 + x2z + x3z
2 + · · · + xqz

q−1)

Y = Φ(y1 + y2z + y3z
2 + · · · + yqz

q−1)

and let Z = XY . From the definition of matrix multiplication, we have

Zi, j =

q
∑

m=1

Xi, m · Ym, j.

By Equation 4.1, this means that

Zi, j =

q
∑

m=1

π(i,m) · π(m, j) · σi−1(X1, τi(m)) · σ
m−1(Y1, τm(j)).

Thus, the entries in the first row of Z are

Z1, j =

q
∑

m=1

π(m, j) · X1, m · σm−1(Y1, τm(j)).

Since the matrices W and Z are completely characterized by the entries W1, j

and Z1, j, and since xj = X1, j and yj = Y1, j, it follows that W = Z. Thus,

Φ((x1 + · · · + xqz
q−1)(y1 + · · · + yqz

q−1))

= Φ(x1 + · · · + xqz
q−1)Φ(y1 + · · · + yqz

q−1)

and Φ is a ring homomorphism. Since Φ is also Q-linear, it is a Q-algebra
isomorphism.

As mentioned earlier, we are particularly interested in when A = ϕ(Lq)
is a division algebra. Fortunately, such a criterion exists for Ã.

Theorem 3. The algebra Ã is a division algebra if and only if p is not the
norm of an element in L×; i.e., p /∈ NL/Q(L×).

Proof. This is proven by Reiner ([10], Theorem 30.4.iii).

Since Ã is isomorphic to A, Theorem 3 holds for A. We supplement this
result with an observation about eigenvalues of matrices in A.
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Proposition 1. If A = ϕ(Lq) contains a nonscalar matrix with a rational
eigenvalue, then A is not a division algebra.

Proof. Let X ∈ A be a nonscalar matrix with nonzero eigenvalue λ ∈ Q.
Since matrices in A give linear transformations of the vector space Lq, there
exists a nonzero v ∈ Lq such that X(v) = λ · v. Then the matrix Y =
X − λ · I ∈ A is nonzero (since X is not a scalar matrix), and by the
existence of v it follows that Y is noninvertible. Therefore, A is not a division
algebra.

5 Identifying cocompact lattices

We now consider the matter of cocompactness. Fortunately, there exists an
elegant criterion to determine whether an A-arithmetic lattice Γ is cocom-
pact.

Theorem 4 (Godement compactness criterion). Let G be a semisimple
algebraic group defined over Q. The quotient space GZ\G is compact if and
only if GZ contains no nontrivial unipotent elements.

Proof. This appears in several places; cf. Mostow and Tamagawa [7].
For the present work, we wish to make use of a modified version of this

theorem.

Theorem 5. Let Γ, A, and G be defined as in Theorem 1. The following
are equivalent:

1. the quotient space Γ\G is compact,

2. Γ has no nontrivial unipotent elements,

3. A has no nontrivial unipotent elements.

Proof. By definition, Γ is commensurable with GZ. Thus, Γ\G is compact
if and only if GZ\G is compact (cf. [9], p. 170). Next, we show that Γ has
nontrivial unipotent elements precisely when GZ has nontrivial unipotent
elements. A unipotent matrix u satisfies (u − I)n = 0 for some n ∈ Z+.
Any positive integer power of u is also unipotent, since (um − I)n = (u −
I)n(um + um−1 + · · · + 1)n = 0. Suppose u ∈ GZ is unipotent. If Γ and GZ

are commensurable then the set GZ/(Γ ∩ GZ) has finite order, and so the



60 E. R. Tou, L. Stemkoski

coset ur(Γ ∩ GZ) equals the identity coset (Γ ∩ GZ) for some r ∈ Z+. Thus,
ur ∈ Γ ∩ GZ and is therefore a unipotent element in Γ. A similar argument
will provide the converse.

Next, we observe that Γ contains nontrivial unipotent elements precisely
when the algebra A contains nontrivial unipotent elements. One implication
is trivial, as Γ is contained in A. The other implication follows from [9] (cf.
Theorem 10.18); for any unipotent element u ∈ A there exists r ∈ Z+ such
that ur ∈ Γ.

We now bring together the above criteria in order to give a number-
theoretic criterion for cocompactness.

Theorem 6. Let Γ be an A-arithmetic lattice in SLq(R), where A is derived
from a Galois field L and a positive integer p, as described in Theorem 1.
Then Γ is cocompact if and only if p 6∈ NL/Q(L×).

Proof. (⇐). Suppose that p 6∈ NL/Q(L×). By Theorem 3, A is a division
algebra. If Γ were not cocompact, then it would contain a nontrivial unipo-
tent element u, by Theorem 5. Since all eigenvalues of u are equal to 1,
Proposition 1 dictates that A cannot be a division algebra, a contradiction.
Therefore Γ must be cocompact.

(⇒). Suppose that Γ is cocompact but p ∈ NL/Q(L×). By Theorem 3 A
is not a division algebra. Since q is prime, Wedderburn’s theorem (cf. [5], p.
171) implies that A ∼= Matq×q(Q). From this we see that A contains unipo-
tent elements. This contradicts the assumption that Γ is not cocompact, via
Theorem 5.

6 Examples and Properties

At this point, we have seen that any Galois field L of odd prime degree q
will admit the construction of an arithmetic lattice in SLq(R). Since every
abelian number field is a subfield of Q(ζn) for some primitive nth root of unity
ζn, we may explicitly construct all cubic Galois fields as subfields of these
cyclotomic fields. To do this, let n ∈ Z+ be such that 3 divides φ(n), where
φ is Euler’s totient function. Then consider the cyclotomic field K = Q(ζn).
Since the Galois group Gal(K/Q) is isomorphic to (Z/nZ)× and has order
φ(n), we know that it has a subgroup of index 3 and therefore K has a
subfield L of degree 3 over Q. Since (Z/nZ)× is abelian, the cubic field L is
also Galois.
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We now determine L explicitly using Gaussian periods (cf. [4], [6]). Let
H be a subgroup of index 3 in the Galois group (Z/nZ)×. Then define the
Gaussian period ω =

∑

k∈H ζk
n =

∑

k∈H cos(2πk
n

) ∈ R. Since ω is real, it
follows that L = Q(ω) is a real field. By Theorem 1, we may combine L with
a prime p to construct a lattice Γ in SL3(R).

Lemma 1. Let p, q be distinct primes, and suppose that the qth cyclotomic
polynomial f(x) = xq−1 + xq−2 + · · · + x + 1 is reducible modulo p. Then, p
is not a primitive root modulo q.

Proof. Suppose f(x) is reducible modulo p, and let g(x) be an irreducible
factor of f(x) with deg g(x) = r < deg f(x) = q−1. Since g is irreducible, the
finite field Fpr is isomorphic to Fp[α] where α is a root of g. Since αq − 1 = 0
and q is prime, it follows that the order of α (as an element of F×

pr) is equal
to q. By Lagrange’s theorem q must divide pr − 1; consequently, pr ≡ 1
(mod q). Since r < q − 1, it follows that p is not a primitive root modulo
q.

Theorem 7. Let n, p be distinct primes with n ≡ 1 (mod 3). Let H be an
index 3 subgroup of (Z/nZ)× and define the Gaussian period ω =

∑

k∈H ζk
n,

where ζn = e2πi/n. Lastly, define L = Q(ω). If p is a primitive root modulo
n, then the lattice Γ = ΓL,p is cocompact in SL3(R).

Proof. First of all, since Gal(Q(ζn)/Q) ∼= (Z/nZ)× with order φ(n) = n − 1
and n ≡ 1 (mod 3), it follows that there exists a subgroup of index 3 in the
Galois group Gal(Q(ζn)/Q). We have already denoted such a subgroup by
H.

Next, we know from Theorem 6 that ΓL,p will be cocompact precisely
when p 6∈ NL/Q(L×). To this end, let σ ∈ Gal(L/Q) be nontrivial and
suppose that p = NL/Q(t) = tσ(t)σ2(t) for some t ∈ L×. Since t and its
Galois conjugates are contained in L, there is a positive integer m such
that pm = sσ(s)σ2(s), where s = a + bω + cω2 with a, b, c ∈ Z and p ∤
gcd(a, b, c). This means that sσ(s)σ2(s) = 0 as an element of (Z/pZ)[ζn].
Since (Z/pZ)[ζn] ∼= (Z/pZ)[x]/〈f(x)〉 via the identification ζn ↔ x, we have
the following polynomial equation:

s1(x)s2(x)s3(x) = 0 ∈ (Z/pZ)[x]/〈f(x)〉,

where f(x) is the nth cyclotomic polynomial and the polynomials s1, s2, s3

are obtained from s, σ(s), σ2(s), respectively. This shows the existence of
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zero divisors in (Z/pZ)[x]/〈f(x)〉, so it is not an integral domain. Thus,
f(x) must be reducible modulo p. But this contradicts Lemma 1, since we
assumed that p is a primitive root of the prime n. Therefore, p 6∈ NL/Q(L×).
By Theorem 6, Γ is a cocompact lattice in SL3(R).

Since Theorem 7 requires that n be prime, Gal(Q(ζn)/Q) is cyclic and
therefore has a unique subgroup of each possible order. This means that
there is only one possible choice for the subgroup H; namely,

H = {1 ≤ j < n | gcd(j, n) = 1, j(n−1)/3 ≡ 1 (mod n)}.

This gives rise to a very simple method for generating cocompact lattices in
SLn(R).

Example 1. Select n = 7, with ζ7 = ζ. Then, H = {1, 6}, ω = ζ + ζ6

and L = Q(ω). Furthermore, the minimal polynomial of ω over Q is µ(x) =
x3 + x2 − 2x − 1 and L is Galois, so L is the splitting field of µ(x) over Q.
Since 3 and 5 are the primitive roots modulo 7, any prime p ≡ 3, 5 (mod 7)
will produce a cocompact lattice in SL3(R).

Example 2. Select n = 13, with ζ13 = ζ. Then H = {1, 5, 8, 12}, ω =
ζ + ζ5 + ζ8 + ζ12 and L = Q(ω). Furthermore, the minimal polynomial of ω
over Q is µ(x) = x3 + x2 − 4x + 1 and L is Galois, so L is the splitting field
of µ(x) over Q. Since 2, 6, 7, and 11 are the primitive roots modulo 13, any
prime p ≡ 2, 6, 7, 11 (mod 13) will give a cocompact lattice in SL3(R).

Finally, we consider the eigenvalues of matrices in the arithmetic lattices
Γ ⊆ SL3(R). Using the explicit construction in Theorem 1, it is a simple
matter to check that an element γ = ϕ(x1, x2, x3) ∈ Γ has characteristic
polynomial

cγ(r) = r3 − T (x1)r
2 +

(

T (x1σ(x1)) − p · T (x2σ(x3))
)

r − 1,

where T = TrL/Q is the number-theoretic trace. Note in particular that
cγ(r) ∈ Z[r]. When Γ is cocompact, Proposition 1 implies that each eigen-
value of γ is algebraic of degree 3 over Q. We more fully characterize the set
of eigenvalues with the following result.

Proposition 2. Suppose that Γ is a cocompact, A-arithmetic lattice in SL3(R).
The characteristic polynomial of every nonscalar matrix Y in the division
algebra A is separable and irreducible. In particular, its eigenvalues are dis-
tinct.
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Proof. Let f ∈ Q[x] be the (cubic) characteristic polynomial of Y ∈ A. Since
irreducible polynomials in Q[x] are also separable, we need only rule out the
possibility that f is reducible over Q. This is easily done: a cubic polynomial
reducible over Q must have a rational root, meaning that Y has a rational
eigenvalue, contradicting Proposition 1.
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